Multi-Task Learning of Keyphrase Boundary Classification

نویسندگان

  • Isabelle Augenstein
  • Anders Søgaard
چکیده

Keyphrase boundary classification (KBC) is the task of detecting keyphrases in scientific articles and labelling them with respect to predefined types. Although important in practice, this task is so far underexplored, partly due to the lack of labelled data. To overcome this, we explore several auxiliary tasks, including semantic super-sense tagging and identification of multi-word expressions, and cast the task as a multi-task learning problem with deep recurrent neural networks. Our multi-task models perform significantly better than previous state of the art approaches on two scientific KBC datasets, particularly for

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State of the Art of Automatic Keyphrase Extraction Methods (État de l'art des méthodes d'extraction automatique de termes-clés) [in French]

State of the Art of Automatic Keyphrase Extraction Methods This article presents the state of the art of the automatic keyphrase extraction methods. The aim of the automatic keyphrase extraction task is to extract the most representative terms of a document. Automatic keyphrase extraction methods can be divided into two categories : supervised methods and unsupervised methods. For supervised me...

متن کامل

Single Document Keyphrase Extraction Using Label Information

Keyphrases have found wide ranging application in NLP and IR tasks such as document summarization, indexing, labeling, clustering and classification. In this paper we pose the problem of extracting label specific keyphrases from a document which has document level metadata associated with it namely labels or tags (i.e. multi-labeled document). Unlike other, supervised or unsupervised, methods f...

متن کامل

Keyphrase Extraction and Grouping Based on Association Rules

Keyphrases are important in capturing the content of a document and thus useful for many natural language processing tasks such as Information Retrieval, Document Classification, and Text Summarization. Keyphrase extraction aims to identify multi-word sequences from a collection of documents that more or less correspond to keyphrases. In this paper, we propose a new method for keyphrase extract...

متن کامل

MayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications

In this paper, we present MayoNLP’s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance p...

متن کامل

Extraction of Significant Phrases from Text

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017