Multi-Task Learning of Keyphrase Boundary Classification
نویسندگان
چکیده
Keyphrase boundary classification (KBC) is the task of detecting keyphrases in scientific articles and labelling them with respect to predefined types. Although important in practice, this task is so far underexplored, partly due to the lack of labelled data. To overcome this, we explore several auxiliary tasks, including semantic super-sense tagging and identification of multi-word expressions, and cast the task as a multi-task learning problem with deep recurrent neural networks. Our multi-task models perform significantly better than previous state of the art approaches on two scientific KBC datasets, particularly for
منابع مشابه
State of the Art of Automatic Keyphrase Extraction Methods (État de l'art des méthodes d'extraction automatique de termes-clés) [in French]
State of the Art of Automatic Keyphrase Extraction Methods This article presents the state of the art of the automatic keyphrase extraction methods. The aim of the automatic keyphrase extraction task is to extract the most representative terms of a document. Automatic keyphrase extraction methods can be divided into two categories : supervised methods and unsupervised methods. For supervised me...
متن کاملSingle Document Keyphrase Extraction Using Label Information
Keyphrases have found wide ranging application in NLP and IR tasks such as document summarization, indexing, labeling, clustering and classification. In this paper we pose the problem of extracting label specific keyphrases from a document which has document level metadata associated with it namely labels or tags (i.e. multi-labeled document). Unlike other, supervised or unsupervised, methods f...
متن کاملKeyphrase Extraction and Grouping Based on Association Rules
Keyphrases are important in capturing the content of a document and thus useful for many natural language processing tasks such as Information Retrieval, Document Classification, and Text Summarization. Keyphrase extraction aims to identify multi-word sequences from a collection of documents that more or less correspond to keyphrases. In this paper, we propose a new method for keyphrase extract...
متن کاملMayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications
In this paper, we present MayoNLP’s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance p...
متن کاملExtraction of Significant Phrases from Text
Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This pape...
متن کامل